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ABSTRACT
In this paper we study estimation of unknown parameter in the subdiffusion model
based on discrete observations. We obtain consistency and asymptotic distribution
properties of the estimator. The limit distributions are shown to be different in
sub-critical, critical and super-critical cases.
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1. Introduction

Stochastic differential equation (SDE) has applications in biophysics, statistical
physics, climate and weather sciences, interface growth, turbulence in fluid dynamics,
polymer structure, finance and sports. The SDE can be used to model air pollution,
dye dispersion or traffic flow with the solution representing the density of the pol-
lutant (or dye or traffic). SDE can be useful for modeling long-range correlations of
DNA sequences. Molecular motors play a key role for generation of movements and
forces in cells. SDE can be useful for modeling in biophysis, e.g., what is the maximal
excursion of a molecular motor against or in the average direction of the motor within
a given time? How long does it take a motor to reach its maximum excursion against
the chemical bias? What is the entropy production associated with an extreme fluctu-
ation of a molecular motor? Other examples are microtubule catastrophes or a sperm
winning a race against a billion competitors. Stochastic nonlinear differential equation
has particular applications which involve a two-phase fluid flow, which has been used
to study the flow of water through oil in a porous medium. For porous media flows, the
spatial variations of porous formations occur on all length scales, but only variations
at the largest length scales are reliably reconstructed from data. The heterogeneities
occurring in the smaller lengths scales are incorporated stochastically.

Neurons express intrinsic bioelectrical activity which is known to be stochastic in
nature. Hence parameter estimation in biological models of neurons and neural net-
works are very important problems. These can be treated as hidden Markov models.
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In particular, stochastic Hodgkin-Huxley type model is a very important biophysical
model. In cellular biophysics, the mathematical reconstruction of nerve impulse was
studied by Hodgkin and Huxley [1] which won them a Nobel prize in 1965. Hodgkin and
Huxley [1] introduced a model for the membrane current of the squid giant axon. Their
seminal work was immediately recognized as a breakthrough in the understanding of
nerve excitation and their mathematical model of ion currents across the membrane
of excitable cells have been used extensively.

The mammalian central nervous system consist of the brain and the spinal cord.
The major component of the brain are the cerebral hemisphere which are linked with
the millions of nerve fibers which constitute the corpus callosum. In man, each hemi-
sphere, if laid out flat will would have an area of 1200 square cm and 3 mm thick.
The nervous system consistent of discrete units called neurons. There are 0.25 billion
neurons in a whole brain. Neurons are pyramidal cells and has a branching structure
called dendrides and referred to as dendritic trees originates from a relatively compact
cell body called soma. A typical soma dimension is 20 to 50 microns, typical dendride
diameters range from a few to 10 microns. From a soma will usually project an action
which transmits action potentials to its endings, called telodendria, these in turn make
contact with other nerve cells or muscle cells.

Penetration of a neuron’s membrane with a microelectrode shows that when a cell
is in the resting state, the electrical potential is about -70mV inside relative to that of
external medium. The membrane potential Vm is defined as the inside potential minus
the outside potential. The latter is usually set arbitrarily zero, so the resting membrane
potential is Vm,R = −70mV . The depolarization is defined as V = Vm − Vm,R. A cell
is said to be excited (or depolarized) if V > 0 and inhibited (or hyperpolarized) if
V < 0. In many neurons, when a sufficient (threshold) level of excitation is reached,
an action potential may occur. The time interval between action potential, called the
interspike intervals is random. The input current is a random process.

From their experimental results on ionic currents for squid axon under voltage
clamp, Hodgkin and Huxley [1] formulated a system of nonlinear reaction diffusion
equations with four components: voltage, potassium activation, sodium activation and
sodium inactivation.

The stochastic version of Hodgkin-Huxley model is the following SDE: Let X be
the gating process for the voltage dependent ion channel satisfying

dXt = (α(Vm)(1−Xt)− β(Vm)Xt)dt+ σdWt, t ≥ 0

where α and β are the rate functions of activation or inactivation processes, W is a
Brownian motion and σ is the intensity of random fluctuations. Here Vm is the change
in the membrane potential in the intracellular calcium concentration. See Tuckwell [2]
and Ermentrout and Terman [3]. For parameter estimation in Hodgkin-Huxley model,
see Willms et al. [4].

Subdiffusion model is a very important to molecular biology, especially for particles
in complicated solvent environments. Yang et al. [5] observed subdiffusion phenomenon
while conducting single molecule experiments on a protein-enzyme system. The exper-
iment studied a protein-enzyme compound called Fre, which is involved in the DNA
synthesis of the bacterium E. Coli. In the reactions, Fre works as a catalyst. The crys-
tal structure of Fre contains two smaller structures: FAD (an electron carrier) and Tyr
(an amino acid). The 3D conformation (shape) of Fre spontaneously fluctuates, and
consequently, the (edge-to-edge) distance between the two substructures FAD (flavin
adenine dinucleotide) and Tyr (tyrosine) varies over time. It was found in the ex-
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periment that the stochastic distance fluctuation between FAD and Tyr undergoes a
subdiffusion. A major class of anomalous diffusion is subdiffusion. The subdiffusion
phenomenon is widespread in condensed phase system. The distance between a donor
and an acceptor of electron transfer within a single protein molecule undergoes subd-
iffusion. The fluctuation of protein conformation results in dynamic disorder of enzy-
matic rates. In a living cell, many important biological functions are often carried out
by single molecules. The model is non-Markovian and non-semimartingale. Adding a
fractional Gaussian noise into a stochastic integro-differential equation framework gov-
erned by generalized Langevin equation gives subdiffusion. Kou [6] studied this model
and gave a spectral analysis of the stochastic integro-differential equations along with
a microscopic derivation of the model from a system of interacting particles. Sieve
estimation in interacting particle systems of diffusions was studied in Bishwal [7].
Bernstein-von Mises Theorem and Bayes estimation in interacting particle systems
of diffusions was studied in Bishwal [8]. Robust and efficient estimation in Gompertz
diffusion model of tumor growth was studied in Bishwal [9]. Recently Baltazar-Larios
et al. [10] studied maximum likelihood estimation for a stochastic SEIR (Susceptible-
Exposed-Infected-Recovered) system with a COVID-19 application. A fractional anti-
persistent model of stochastic SIRD type for COVID-19 pandemic was proposed in
Alos et al. [11].

Parameter estimation of stochastic models is an inverse problem which is useful
for any implementation. Here we study estimation in a theoretical model for subd-
iffusion based on generalized Langevin equation with fractional Gaussian noise with
long memory. Under a harmonic potential this model describes a stationary Gaussian
fluctuation at a broad range of time scales. Parameter estimation for directly observed
stochastic differential equations was studied in Bishwal [12]. Minimum contrast esti-
mation in fractional Ornstein-Uhlenbeck process was studied in Bishwal [13]. Wang et
al. [14] estimated the parameter in the fractional Ornstein-Uhlenbeck process by the
method of moments. Parameter estimation in partially observed SDE models includ-
ing stochastic volatility models was studied in Bishwal [15]. In this paper, based on
discrete observations, we estimate the unknown parameter in the bivariate subdiffu-
sion cum displacement model by the method of moments and obtain consistency and
asymptotic distribution property of the estimator.

2. Fractional Model and Preliminaries

Consider the bivariate displacement and subdiffusion model

dYt = Xtdt, t ≥ 0,

m dXt = −θ
(∫ t

−∞
XuKH(t− u)du

)
dt− U ′(Yt)dt+

√
2θκBTdW

H
t , t ≥ 0

where KH(t) = 2H(2H − 1)|t|2H−2 for t ̸= 0, (WH
t , t ≥ 0) is fractional Brownian

motion with Hurst parameter H ∈ (1/2, 1), U(y) is an external potential and ψ is
the strength of the potential, κB is the Boltzmann constant, T is the underlying
temperature and θ > 0 is the unknown parameter. Under harmonic potential U(y) =
mψy2/2, we have U ′(y) = mψy where m is the mass of the particle. The process (Yt)
is observed at discrete time points ti, i = 0, 1, 2, . . . , n with ti − ti−1 = ∆ > 0.
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For the standard Langevin equation (H = 1/2),

mdXt = −θXtdt+
√

2θκBTdWt,

E(XtXs) =
κBT

m
exp(− θ

m
|t− s|),

V ar(Yt) = E(X2
t ) =

∫ t

0

∫ t

0
E(XuXs)duds = 2

κBT

θ
t−2

κBTm

θ2
(1−exp(− θ

m
t) ∼ 2

κBT

θ
t

for large t.
Diffusions in proteins are classified as: Subdiffusion (1/2 < H < 1), Superdiffusion

(0 < H < 1/2), Diffusion (H = 1/2).
Subdiffusions are classified as follows: Weak Subdiffusion: (1/2 < H < 3/4), Critical

Subdiffusion: H = 3/4, Strong Subdiffusion: (3/4 < H < 1).
The fractional Brownian motion (fBm) with Hurst index H is a centered Gaus-

sian process with locally Hölder continuous paths of any order smaller than H and
covariance function

E[WtWs] =
1

2
(|t|2H + |s|2H − |t− s|2H), s, t ≥ 0.

The parameter H with 0 ≤ H ≤ 1 is the Hurst index which produces the Brownian
motion when H = 1/2. The increments of fBm are positively correlated for H > 1/2
(persistent diffusion) and negatively correlated for H < 1/2 (rough diffusion). FBm
is self similar (scale invariant) and it can be represented as a stochastic integral with
respect to standard Brownian motion. For H ̸= 1

2 , the fBm is not a semimartingale and
not a Markov process, but a Dirichlet process. The parameter H which is also called
the self similarity parameter, measures the intensity of the long range dependence.
The ARIMA(p, d, q) with autoregressive part of order p, moving average part of order
q and fractional difference parameter d ∈ (0, 0.5) process converge in Donsker sense
to fBm.

As a generalization of fractional Brownian motion we get the Hermite process of
order k with Hurst parameter H ∈ (12 , 1) which is defined as a multiple Wiener-Itô
integral of order k with respect to standard Brownian motion (B(t))t∈R

ZH,k
t := c(H, k)

∫
R

∫ t

0

k∏
j=1

(s− yi)
−( 1

2
+H−1

2
)

+ ds dB(y1)dB(y2) · · · dB(yk)

where x+ = max(x, 0) and the constant c(H, k) is a normalizing constant that ensures

E(ZH,k
t )2 = 1.

For k = 1 the process is fractional Brownian motion (WH
t ) with Hurst parameter

H ∈ (0, 1). For k = 2 the process is Rosenblatt process. For k ≥ 2, the process is
non-Gaussian.

The Rosenblatt process is not a semimartingale and for H > 1/2, the quadratic
variation is 0. The distribution of the process is infinitely divisible. It is unknown yet
whether the process is Markov or not.
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The covariance kernel R(t, s) is given by

R(t, s) := E[ZH,k
t ZH,k

s ] = c(H, k)2
∫ t

0

∫ s

0

[
(u− s)

−( 1

2
+H−1

2
)

+ ds(v − y)
−( 1

2
+H−1

2
)

+ dy
]k
dudv.

A weighted fBm (wfBm) ξt has the covariance function

q(s, t) =

∫ s∧t

0
ua[(t− u)b + (s− u)b]du, s, t ≥ 0

where a > −1, −1 < b ≤ 1, |b| ≤ 1 + a. When a = 0, it is the usual fBm with
Hurst parameter (b + 1)/2 up to a multiplicative constant. For b = 0 it is a time-
inhomogeneous Bm.

The function ua is called the weight function of wfBm. For a = 0, this process is
usual fBm with Hurst parameter (b + 1)/2. For the case b = 1, this process has the

covariance of the process
∫ t
0 Wradr where W is standard Brownian motion. For b = 0,

this process is time-inhomogeneous Bm. The finite dimensional distributions of the
process (T−a/2(ξt+T − ξT )), t ≥ 0 converge as T → ∞ to those of fBm with Hurst
parameter (1 + b)/2 multiplied by (2/(1 + b)))1/2. The process has asymptotically
stationary increments for long time intervals, but not for short time intervals. For
b ̸= 0, the process is neither a semimartingale nor a Markov process.

This process occurs as the limit of occupation time fluctuations of a particle system
of independent particles moving in Rd with symmetric α-stable Levy process, 0 <
α ≤ 2, started from an inhomogeneous Poisson configuration with intensity measure
dx/(1 + |x|γ), 0 < γ ≤ d = 1 < α, a = −γ/α, b = 1− 1/α,−1 < a < 0, 0 < b ≤ 1 + a.
The homogeneous case γ = 0 gives fBm.

The generalized Langevin equation is given by

m
dXt

dt
= −θ

∫ t

−∞
XuK(t− u)du+Gt

where Gt is a color noise and K is a kernel convoluted with the velocity makes the
process non-Markovian.

The kernel K and and the noise Gt for any closed (equilibrium) physical system
must satisfy the fluctuation-dissipation theorem which requires that

E[GtGs] = κBTθK(t− s).

We will consider the case 1/2 < H < 1 which leads to subdiffusion given by

mdXt = −θ
(∫ t

−∞
XuKH(t− u)du

)
dt−mψYt +

√
2θκBTdW

H
t ,

Yt =

∫ t

0
Xsds

where KH(t) = 2H(2H − 1)|t|2H−2 for t ̸= 0.
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The process Yt =
∫ t
0 Xsds is the displacement with V ar[Yt] ∼ t2−2H for large t. The

harmonic potential pulls the particle back to the origin. In the limiting case of ψ → 0,
the harmonic potential becomes weaker and weaker and, the particle will behave more
and more like a free particle. Under a harmonic potential,

E[XsXs+t] = E[X0Xt] =
κBT

mψ
E2−2H(−(t/τ)2−2H)

where

τ :=

(
θΓ(2H + 1)

mψ

)1/(2−2H)

and Eα(z) is the Mittag-Leffler function defined by

Eα(z) =

∞∑
k=0

zk/Γ(αk + 1),

E1(z) =

∞∑
k=0

zk/Γ(k + 1) =

∞∑
k=0

zk/k! = exp(z).

The Mittag-Leffler function generalizes the exponential function in a natural way.
When H → 1, the Mittag-Leffler function reduces to the exponential function and

E[X0Xt] =
κBT

mψ
exp(−(mψ/θ)t)

recovering the classical Brownian diffusion result.
The solution of the equation generalized Langevin equation with fractional Gaussian

noise is given by

Xt =
√

2θκBT

∫ ∞

−∞
ρ(t− u)dWH

u ,

Yt =
√

2θκBT

∫ ∞

−∞
ρ′(t− u)dWH

u

where

ρ(t) =
1

2π

∫ ∞

−∞
e−itw 1

mψ −mω2 − iωθK̃+
H(ω)

dω,

K̃+
H(ω) =

∫ ∞

0
eitωKH(t)dt = Γ(2H + 1)|ω|1−2H [sin(Hπ)− i cos(Hπ)sign(ω)],
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K̃H(ω) =

∫ ∞

−∞
eitωKH(t)dt = Γ(2H + 1)|ω|1−2H sin(Hπ)|ω|1−2H

which are the Fourier transforms of the kernel KH(t) on the positive real line and the
entire real line respectively.

The process (Xt, Yt) is a stationary bivariate Gaussian process with zero means and
covariance functions given by

E(XsXs+t) =
θκBT

2π

∫ ∞

−∞
e−itw ω2K̃H(ω)

|mψ −mω2 − iωθK̃+
H(ω)|2

dω,

E(XsYs+t) =
θκBT

2π

∫ ∞

−∞
e−itw iωK̃H(ω)

|mψ −mω2 − iωθK̃+
H(ω)|2

dω,

E(YsXs+t) =
θκBT

2π

∫ ∞

−∞
e−itw iωK̃H(ω)

|mψ −mω2 − iωθK̃+
H(ω)|2

dω,

E(YsYs+t) =
θκBT

2π

∫ ∞

−∞
e−itw K̃H(ω)

|mψ −mω2 − iωθK̃+
H(ω)|2

dω.

This gives

V ar(X0) = E(V 2
0 ) =

κBT

m
E2−2H(0) =

κBT

m
,

V ar(Y0) =
κBT

mψ
E2−2H(0) =

κBT

mψ
.

3. Main Results

The process Y is observed at time points ti, i = 1, 2, . . . , n. We estimate θ by method
of moments. Our equally spaced data set is {Yt0 , Yt1 , Yt2 , . . . , Ytn}. We assume that
ti − ti−1 = ∆ > 0, i = 1, 2, . . . , n. and ∆ is fixed. The method of moments estimator of
θ is given by

θ̂n =
mψ∆2−2H

Γ(2H + 1) ln2−2H

∑n
i=1 Y

2
ti−1∑n

i=1 Yti−1
Yti

.

When the process X is observed, the Hurst parameter H can be estimated by the
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change-of-frequency (COF) estimator based on the second-order difference of Xt:

Ĥ =
1

2
log2

(∑n−4
i=1 (Xti+4

− 2Xti+2
+Xti)

2∑n−2
i=1 (Xti+2

− 2Xti+1
+Xti)

2

)
.

This estimator has asymptotic normality with the rate
√
n.

The following is the main result of the paper.

Theorem 3.1 (Sub-critical case) Let 1/2 < H < 3/4. Then

a) θ̂n →P θ as n→ ∞.

b)
√
n(θ̂n − θ) →D N (0, I−1

H (θ)) as n→ ∞

where IH(θ) is the Fisher information given by

IH(θ) :=
2θ2Hmψ∆2−2H

Γ(2H + 1)κBT
.

c) (Critical case) For the case H = 3/4, the limit distribution will be Gaussian with
a rate

√
n/ log n:

√
n

log n
(θ̂n − θ) →D N

(
0,

16θ

9π

)
as n→ ∞.

d) (Super-critical case) For the case H > 3/4, the limit distribution will be that of
a non-Gaussian Rosenblatt process with the rate n2−2H :

n2−2H(θ̂n − θ) →D 2θ2Hmψ∆2−2H

Γ(2H + 1)κBT
R as n→ ∞

where R is the Rosenblatt random variable.

Proof. Following the method in Masuda [16] along with Van der Vaart [17], and
ergodicity and central limit theorem for second Wiener chaos under fourth moment
condition in Nourdin and Peccati [18, 19], and delta method, the theorem follows. See
also Wang et al. [14]. We omit the details.

Concluding Remarks For the case H > 3/4, the limit distribution will be that
of a non-Gaussian Rosenblatt process with the rate n2−2H . For the case H = 3/4,
the limit distribution will be Gaussian with a rate

√
n/ log n. Similar phenomenon

occurs in maximum likelihood estimation for Feller [20] branching diffusion process
with immigration, which are used in population biology, but for different parts of the
parameter space, see Overbeck [21]. Models with H < 1/2 are useful for COVID-19
modeling, see Alos et al. [11].
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